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Abstract

This paper provides a first test for the identification condition in a nonparametric instrumen-

tal variable model, known as completeness, by linking the outcome of the test to consistency

of an estimator. In particular, I show that uniformly over all distributions for which the

test rejects with probability bounded away from 0, an estimator of the structural function

is consistent. This is the case for a large class of complete distributions as well as certain

sequences of incomplete distributions. As a byproduct of this result, the paper makes two

additional contributions. First, I present a definition of weak instruments in the nonpara-

metric instrumental variable model, which is equivalent to the failure of a restricted version

of completeness. Second, I show that the null hypothesis of weak instruments, and thus

failure of a restricted version of completeness, is testable and I provide a test statistic and

a bootstrap procedure to obtain the critical values. Finally, I demonstrate the finite sample

properties of the tests and the estimator in Monte Carlo simulations.
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1 Introduction

There has been much recent work on nonparametric models with endogeneity, which relies on

a nonparametric analog of the rank condition, known as completeness. Specifically, consider

the nonparametric instrumental variable (IV) model

(1) Y = g0(X) + U, E(U | Z) = 0,

where Y , X, and Z are observed scalar random variables, U is an unobserved random vari-

able, and g0 is a structural function of interest. It is well known that identification in this

model is equivalent to the completeness condition (Newey and Powell, 2003), which says that

E(g(X) | Z) = 0 almost surely implies that g(X) = 0 almost surely for all g in a certain class

of functions G.1 Next to this nonparametric IV model, completeness has also been used in

various other settings including measurement error models (Hu and Schennach, 2008), panel

data models (Freyberger, 2012), and nonadditive models with endogeneity (Chen, Cher-

nozhukov, Lee, and Newey, 2014). Although completeness has been employed extensively,

existing results so far have only established that the null hypothesis that completeness fails

is not testable. In particular, Canay, Santos, and Shaikh (2013) show that any test that con-

trols size uniformly over a large class of incomplete distributions, has power no greater than

size against any alternative. Intuitively, the null hypothesis that completeness fails cannot

be tested because for every complete distribution, there exists an incomplete distribution

which is arbitrarily close to it. They conclude that “it is therefore not possible to provide

empirical evidence in favor of the completeness condition by means of such a test”.

In an application researchers most likely do not just want to test completeness by itself,

but are instead interested in estimating the structural function g0. If completeness holds,

then standard estimators of g0 have good properties, such as being consistent, and hence,

a test which provides evidence in favor of completeness also implies evidence in favor of

consistency. Contrarily, without completeness standard estimators are not consistent for

g0. Using a test that controls size uniformly over all incomplete distributions would then be

crucial if a nonparametric estimator of g0 had poor properties for any sequence of incomplete

distributions (which may depend on the sample size). For example, in the linear IV model,

where Y = α0+β0X+U and cov(U,Z) = 0, β0 is point identified if and only if cov(X,Z) 6= 0.

Moreover, for any sequence of distributions for which point identification fails, the two stage

least squares (TSLS) estimator is not consistent for β0. Thus, any test of the null hypothesis

1The class of functions typically depends on the restrictions imposed on g0, such as being square integrable

(“L2 completeness”) or bounded (“bounded completeness”).

2



cov(X,Z) = 0, which can provide evidence for consistency of the TSLS estimator, needs to

control size uniformly over all distributions for which point identification fails.

This paper explores a test for completeness, which does not control size uniformly over all

incomplete distributions, and it links the outcome of the test to consistency of an estimator

of g0. The main motivation for this approach is that there are sequences of incomplete distri-

butions which imply great instruments and under which a standard nonparametric estimator

of g0 is consistent. Therefore, if the main goal is to estimate the function g0 consistently,

uniform size control over all incomplete distributions is not necessary. In particular, I pro-

vide a test statistic T̂ , a critical value cn, and an estimator ĝ, such that uniformly over a

large class of distributions

P
(
‖ĝ − g0‖c ≥ εn, nT̂ ≥ cn

)
→ 0,

where ‖·‖c is a consistency norm, n is the sample size, and εn → 0 as n→∞. An important

implication of this result is that for any sequence of distributions for which nT̂ ≥ cn with

probability bounded away from 0, ĝ will be consistent for g0. I show that this is the case

for a large class of complete distributions and certain sequences of incomplete distributions.

Consequently, nT̂ ≥ cn provides empirical evidence for consistency.

As a byproduct of the test, the paper also provides a framework of how one could think

about weak instruments in the nonparametric IV model. Specifically, I define instruments to

be weak if the asymptotic bias of certain estimators of g0 can be larger than a prespecified ε.

Various estimators can be used. The only requirement is that in case of partial identification,

the estimator is close to some function in the identified set as the sample size increases. It

follows that if the instruments are strong, ‖ĝ − g0‖c ≤ ε + op(1) for various estimators ĝ.

This definition of weak instruments is similar to that of Stock and Yogo (2005) in a linear

IV model, but it has some distinct features as discussed in Section 4. It turns out that a

version of the test described above, is a test for the null hypothesis that the instruments are

weak. Furthermore, although we can have strong instruments with an incomplete distribu-

tion, I show that weak instruments are equivalent to the failure of a restricted version of

completeness, where the class of functions G contains particular constraints. Thus, failure

of this restricted version of completeness, or equivalently weak instruments, is testable and

I provide a test statistic and a bootstrap procedure to obtain the critical values. The test

has an intuitive interpretation because it is essentially a constrained version of a rank test

of the covariance matrix of vectors of transformations of X and Z.

Note that for a fixed distribution of the data an estimator of g0 is not consistent if com-

pleteness fails. The results in this paper show that the asymptotic bias of the estimator is
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small for many incomplete distributions, in particular for those that are arbitrarily close to

complete distributions. Furthermore, certain sequences of incomplete distributions lead to

a consistent estimator, which explains the testability result. These results seem intuitive

because if an incomplete distribution is arbitrary close to a complete distribution, we would

expect that the properties of a nonparametric estimator of g0 are almost identical under

both distributions. Also note that this paper does not address the question of conducting

uniformly valid inference following the test. Santos (2012) and Tao (2014) provide inference

methods, which are robust to a failure of point identification, but they do not discuss prop-

erties of estimators of g0 under partial identification. It is also not clear if their inference

methods are uniformly valid over a large class of distributions. I complement their work be-

cause a consistent estimator of g0 could be of interest next to confidence intervals for certain

functionals of g0, which is delivered by the results in this paper if the instruments are strong

enough. Moreover, since the test provides evidence for the strength of the instruments, it

can help to distinguish how much of an estimated confidence set is due to sampling noise

and how much is due to the size of the identified set.

Several recent papers (including Mattner (1993), Newey and Powell (2003), Andrews

(2011), D’Haultfoeuille (2011), and Hu and Shiu (2012)) have provided sufficient conditions

for different versions of completeness, such as bounded completeness or L2 completeness. The

results of Canay et al. (2013) imply that these versions of completeness are not testable, while

the sufficient conditions might be testable if they are strong enough. My restrictions on the

class of functions G, which imply testability, are different than the versions of completeness

considered in those papers, but I am concerned with consistent estimation, testing, and the

relationship to weak instruments, instead of providing sufficient conditions.

This paper contributes to the nonparametric IV literature by showing that the data can

provide empirical evidence for consistency. Most theoretical work relies on the completeness

assumption, such as Newey and Powell (2003), Hall and Horowitz (2005), Blundell et al.

(2007), Darolles et al. (2011), Horowitz (2011), Horowitz and Lee (2012), Chen and Chris-

tensen (2013), and Horowitz (2014). Santos (2012) provides an inference method for linear

functionals of g0 without completeness. Other settings and applications which use complete-

ness include Hu and Schennach (2008), Berry and Haile (2014), Chen et al. (2014), and

Sasaki (2014). There is also a growing literature on general models with conditional moment

restrictions which include instrumental variable models as special cases. Several settings

assume point identification (for example Ai and Chen (2003), Chen and Pouzo (2009, 2012,

2014)) while others allow for partial identification (Tao, 2014).
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Additional related papers are those on weak instruments in other models, in particular the

linear model. Some papers (for example Staiger and Stock (1997)) consider estimation under

weak instruments while others develop tests for weak instruments (among many others Cragg

and Donald (1993), Stock and Yogo (2005), Montiel Olea and Pflueger (2013)). Han (2014)

deals with weak instruments in the nonparametric triangular model, where identification

follows from a finite dimensional rank condition. He then considers estimation under certain

sequences of distributions, whereas I consider a different model with a different identification

condition and I am mainly concerned with testing and uniform consistency.

The following section provides important definitions and a derivation of the population

test statistic. Section 3 presents the sample test statistic and the formal result which links the

outcome of the test to consistency of an estimator. Section 4 defines weak instruments and

shows the equivalence between weak instruments and a restricted version of completeness.

It also discusses the test statistic for the null hypothesis of weak instruments, characterizes

its asymptotic distribution, and provides a bootstrap procedure to obtain the critical values.

The remaining sections contain a discussion of choices of norms, extensions to functions on

R, Monte Carlo simulation results, and a conclusion.

2 Definitions and population test statistic

This section starts by introducing function spaces and norms that are used throughout the

paper. I then explain why, uniformly over a class of distributions, completeness is not

equivalent to consistency and how this idea can be used as a basis for the test.

2.1 Notation

Let ‖ · ‖ be the Euclidean norm for vectors in RJ . Let X be the support of X and let ‖ · ‖c
and ‖ · ‖s be norms for functions from X to R. Define the parameter space

G̃ = {g : ‖g‖s ≤ C}

where C is a positive constant. Properties of the norms ‖ · ‖c and ‖ · ‖s will be discussed in

detail below but useful examples to think of are:

‖g‖2
c =

∫
X
g(x)2dx and ‖g‖2

s =

∫
X

(
g(x)2 + g′(x)2

)
dx

or

‖g‖c = sup
x∈X
|g(x)| and ‖g‖s = sup

x∈X
|g(x)|+ sup

x1,x2∈X
|g(x1)− g(x2)|/|x1 − x2|.
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A standard smoothness assumption in many nonparametric models, which I also impose in

this paper, is that g0 ∈ G̃ (see e.g. Newey and Powell (2003), Santos (2012), or Horowitz

(2014) in nonparametric IV models). This assumption typically restricts function values and

derivatives of g0. Consistency is then usually proved in the weaker norm ‖ · ‖c.

2.2 Derivation of population test statistic

If g0 is not point identified relative to all functions in G̃, then there exists g1 6= g0 with

‖g1‖s ≤ C and E(g1(X) | Z) = E(Y | Z). Let g ≡ g0− g1. Then g satisfies E(g(X) | Z) = 0

and ‖g‖s ≤ 2C. For a fixed distribution of the data an estimator of g0 is not consistent if g0

is not point identified. That is, it is not consistent if ‖g‖c > 0. However, for a sequence of

distributions consistency typically follows as long as ‖g‖c ≤ εn → 0 for all functions g such

that E(g(X) | Z) = 0 and ‖g‖s ≤ 2C. To show this, let ĝ be an estimator such that

inf
g1:‖g1‖s≤C,E(g1(X)|Z)=E(Y |Z)

‖ĝ − g1‖c = op(1).

That is, ĝ is close to some function in the identified set I = {g1 : ‖g1‖s ≤ C,E(g1(X) | Z) =

E(Y | Z)} as the sample size increases. Many estimators, such as series or Tikhonov type

estimators satisfy this property, even if g0 is not point identified. Then

‖ĝ − g0‖c = inf
g1:‖g1‖s≤C,E(g1(X)|Z)=E(Y |Z)

‖ĝ − g1 + g1 − g0‖c

≤ inf
g1:‖g1‖s≤C,E(g1(X)|Z)=E(Y |Z)

‖ĝ − g1‖c + sup
g1:‖g1‖s≤C,E(g1(X)|Z)=E(Y |Z)

‖g1 − g0‖c

≤ inf
g1:‖g1‖s≤C,E(g1(X)|Z)=E(Y |Z)

‖ĝ − g1‖c + sup
g:‖g‖s≤2C,E(g(X)|Z)=0

‖g‖c

≤ op(1) + εn

It turns out that under certain assumptions we can test the null hypothesis

H0 : There is g such that E(g(X) | Z) = 0, ‖g‖s ≤ 2C, and ‖g‖c ≥ εn

and we can link the outcome of the test to consistency of an estimator of g0. Intuitively, as

demonstrated above, if H0 is false, then the estimator will be consistent. Contrarily if H0 is

true and if the critical value diverges, then we will not reject the null hypothesis. In other

words a test of the null hypothesis then has the feature that

P (‖ĝ − g0‖c ≥ εn, reject H0)→ 0.

I provide a test statistic, a critical value, and an estimator ĝ such that this is true uniformly

over all distributions satisfying Assumption 1 below. As a consequence, for any sequence of
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distributions for which we reject with probability bounded away from 0, ĝ will be consistent

for g0. I show that this is the case for a large class of complete distributions and certain

sequences of incomplete distributions.2

To see how this null hypothesis can be tested, first rewrite

E(g(X) | Z = z) = 0 a.s. ⇔ E(g(X) | Z = z)fZ(z) = 0 a.s.

⇔
∫

(E(g(X) | Z = z)fZ(z))2 dz = 0

⇔
∫ (∫

g(x)fXZ(x, z)dx

)2

dz = 0.

Next define

S0(g) ≡
∫ (∫

g(x)fXZ(x, z)dx

)2

dz

and

T ≡ inf
g:‖g‖s≤2C,‖g‖c≥εn

S0(g).

If the null hypothesis above is true, then T = 0. Contrarily, for any εn > 0 and under certain

restrictions on the norms ‖ · ‖s and ‖ · ‖c, it holds that T > 0 under any alternative. For

instance, suppose that G̃ is compact under ‖ · ‖c and that S0(g) is continuous under ‖ · ‖c.3

Then {g : ‖g‖s ≤ 2C, ‖g‖c ≥ εn} is a closed subset of a compact set,

inf
g:‖g‖s≤2C,‖g‖c≥εn

S0(g) = min
g:‖g‖s≤2C,‖g‖c≥εn

S0(g),

and T > 0 under any alternative. Notice that without the constraint ‖g‖s ≤ 2C, or without

smoothness restrictions on g0, it holds that T = 0 even for complete distributions. This is

one reason for the non-testability result of Canay et al. (2013).

The remaining analysis will be easier if we notice that the infimum will be attained at a

function where ‖g‖c = εn, because otherwise we could simply scale down g. Moreover,

inf
g:‖g‖s≤2C,‖g‖c=εn

S0(g) = inf
g:‖g/εn‖s≤2C/εn,‖g/εn‖c=1

ε2
nS0(g/εn) = inf

g∈Ḡ(εn):‖g‖c=1
ε2
nS0(g),

where

Ḡ(εn) = {g : ‖g‖s ≤ 2C/εn} .

If εn changes with the sample size, then the function space changes with the sample size as

well. Neglecting ε2
n in front of the objective does not change the minimizer, so I will consider

a test statistic based on a scaled sample analog of infg∈Ḡ(εn):‖g‖c=1 S0(g).

2Theorem 2 and the following discussion in Section 3.4 describe the class of distributions and provide

examples of sequences of incomplete distributions.
3Compactness and continuity are implied by Assumption 2.
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3 Testing identification and consistent estimation

In this section I present the sample version of the test statistic, the estimator of g0, and the

result which links the outcome of the test to consistency of the estimator. Throughout the

paper I will assume that X and Z are scalar and that they are continuously distributed with

compact support and joint density fXZ with 0 < fXZ(x, z) ≤ Cd < ∞ almost everywhere.

We can then assume without loss of generality that X,Z ∈ [0, 1].4 In particular, I make the

following assumption about the distribution of the data:

Assumption 1. The data {Yi, Xi, Zi}ni=1 is an iid sample from the distribution of (Y,X,Z),

where (Y,X,Z) are continuously distributed, (X,Z) ∈ [0, 1]2, 0 < fXZ(x, z) ≤ Cd < ∞
almost everywhere, and E(Y 2 | Z) ≤ σ2

Y for some σY > 0. The data is generated by model

(1) and ‖g0‖s ≤ C for some constant C > 0.

3.1 Sample analog of test statistic

To construct the test statistic, let φj be an orthonormal basis for functions in L2[0, 1]. Let

fJ(x, z) =
J∑
j=1

J∑
k=1

ajkφj(x)φk(z),

denote the series approximation of fXZ where

ajk =

∫ ∫
φj(x)φk(z)fXZ(x, z)dxdz.

We can estimate fXZ by

f̂XZ(x, z) =
J∑
j=1

J∑
k=1

âjkφj(x)φk(z)

where

âjk =
1

n

n∑
i=1

φj(Xi)φk(Zi).

The assumptions imply that J → ∞ as n → ∞. Denote the series approximation of a

function g by

gJ(x) =
J∑
j=1

hjφj(x)

where hj =
∫
g(x)φj(x)dx ∈ R for all j. Define the sieve space

ḠJ(εn) =

{
g ∈ Ḡ(εn) : g(x) =

J∑
j=1

hjφj(x) for some hj ∈ R

}
.

4Section 6 outlines the extension to functions on R.
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We can now define the test statistic which is

T̂ = inf
g∈ḠJ (εn):‖g‖c=1

∫ (∫
g(x)f̂XZ(x, z)dx

)2

dz.

To obtain a simpler representation of the test statistic notice that for any g ∈ ḠJ(εn),∫ (∫
g(x)f̂XZ(x, z)dx

)2

dz =

∫ (∫ J∑
l=1

hlφl(x)
J∑
j=1

J∑
k=1

âjkφk(x)φj(z)dx

)2

dz

=

∫ ( J∑
j=1

J∑
k=1

âjkhkφj(z)

)2

dz

=
J∑
j=1

(
J∑
k=1

âjkhk

)2

.

Let Â be the J × J matrix with elements âjk and let A be the population analog. Let h be

the J × 1 vector containing hj. Then

J∑
j=1

(
J∑
k=1

âjkhk

)2

=
∥∥∥Âh∥∥∥2

= h′(Â′Â)h,

where ‖ · ‖ denotes the Euclidean norm. Hence

T̂ = inf
g∈ḠJ (εn):‖g‖c=1

h′(Â′Â)h.

The test statistic depends on the norms ‖ · ‖c and ‖ · ‖s (through ḠJ(εn)), but as described in

the next section using a specific choice of norms, it has the intuitive interpretation of being

a constraint version of a rank test of A′A.

3.2 Interpretation of test statistic with Sobolev spaces

The function space and constraints can be simplified if we are dealing with Sobolev spaces.

In particular, let

‖g‖2
c =

∫ 1

0

g(x)2dx and ‖g‖2
s =

∫ 1

0

(
g(x)2 + g′(x)2

)
dx.

Moreover, define bjk =
∫
φ′j(x)φ′k(x)dx and B as the J × J matrix with element (j, k) equal

to bjk. Then{
g ∈ ḠJ(εn) : ‖g‖c = 1

}
=

{
gJ :

∫ 1

0

g′J(x)2dx ≤ (2C/εn)2 − 1,

∫ 1

0

gJ(x)2 = 1

}
=

{
gJ :

J∑
j=1

J∑
k=1

bjkhjhk ≤ (2C/εn)2 − 1,
J∑
j=1

h2
j = 1

}
=

{
gJ : h′Bh ≤ (2C/εn)2 − 1, h′h = 1

}
.
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It follows that the test statistic is the solution to

min
h∈RJ

h′(Â′Â)h

subject to h′Bh ≤ (2C/εn)2 − 1

h′h = 1.

Without the first constraint, the solution to the optimization problem is the smallest eigen-

value of Â′Â, which could be used to test the rank of A′A if J was fixed (see for example

Robin and Smith, 2000). Thus, the test in this paper can be interpreted as a constrained

version of a rank test, where the dimension of the matrix increases with the sample size.

3.3 Estimator

The estimator, which I will use to prove the consistency result, is a series estimator from

Horowitz (2012). To describe the estimator, let m̂ be a J × 1 vector with

m̂k =
1

n

n∑
i=1

Yiφk(Zi).

Let

ĥ = arg min
h∈RJ :‖gJ‖s≤C

∥∥∥Âh− m̂∥∥∥2

and ĝ(x) =
J∑
j=1

ĥjφj(x).

Notice that the test statistic above is based on a scaled version of

min
h∈RJ :‖gJ‖s≤2C,‖gJ‖c=εn

‖Âh‖2,

which is why this estimator relates nicely to the test.

3.4 Assumptions and main results

I will next state and discuss the remaining assumptions and the main results.

Assumption 2. G̃ is compact under ‖ · ‖c and Co‖g‖2
c ≥

∫
g(x)2dx for some Co > 0.

Assumption 3. The basis functions form an orthornomal basis of L2[0, 1].

Assumption 4. For all g ∈ Ḡ(εn), ‖g − gJ‖c ≤ CgJ
−s̄ with s̄ ≥ 2.

Assumption 5. For all g ∈ Ḡ(εn) with ‖g‖c = 1, gJ/‖gJ‖c ∈ Ḡ(εn) and gJ ∈ Ḡ(εn).
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Compactness is implied by many standard choices of norms, as discussed in more detail

in Section 5. In particular, it holds with the norms used in Section 3.2. The assumption

simplifies the analysis because it guarantees, for example, that the infimum in the definition

of the test statistic is actually attained. It could possibly be relaxed using similar tools

as those in Chen and Pouzo (2012). Also notice that to implement the test statistic, the

constant C in the definition of the function space has to be chosen. Section 5 discusses how

this can done in particular applications. The second part of Assumption 2 implies that S0(g)

is continuous in g under the norm ‖ · ‖c. The assumption allows ‖ · ‖c to be the L2-norm,

the sup-norm, and many other norms.

Assumption 3 is standard. Assumption 4 would also be standard if εn was fixed (see Chen

(2007) for function spaces which satisfy this assumption). It also holds if εn → 0 slow enough

and J →∞ as n→∞, and if the restrictions on the function space are strong enough. For

example, suppose that ‖gJ − g‖c ≤ CgJ
−s̃ for all g such that ‖g‖s ≤ 2C. Equivalently, it

holds that ‖gJ/εn − g/εn‖c ≤ CgJ
−s̃/εn for all g such that ‖g/εn‖s ≤ (2C/εn) or simply

‖g̃J− g̃‖c ≤ CgJ
−s̃/εn for all g̃ ∈ Ḡ(εn). Hence, if for example εn = 1

J
and s̃ ≥ 3, Assumption

4 holds.

Assumption 5 implies that the series approximations of functions in Ḡ(εn) are in ḠJ(εn)

and are therefore contained in the set that is minimized over in the definition of the test

statistic. It is stronger than necessary and it can be relaxed at the expense of additional

notation, but it appears to be reasonable as shown in Appendix B.2.

We now get the following result. All proofs are in Appendix A.

Theorem 1. Suppose Assumptions 1 - 5 hold. Let cn →∞ and εn → 0 such that

nJ−2s̄

ε2
ncn

→ 0 and
J

ε2
ncn
→ 0.

Let P be the class of distributions P satisfying Assumption 1. Then

sup
P∈P

P
(
‖ĝ − g0‖c ≥ εn, nT̂ ≥ cn

)
→ 0.

The theorem implies that for any sequence of distributions Pn for which

Pn

(
nT̂ ≥ cn

)
≥ δ > 0,

it holds that

Pn

(
‖ĝ − g0‖c ≥ εn | nT̂ ≥ cn

)
→ 0
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or equivalently

Pn (‖ĝ − g0‖c ≥ εn | reject H0)→ 0.

Since εn → 0, the results imply that for any sequence of distributions under which we reject

with probability larger than δ, ĝ will be consistent for g0. Interestingly this will not only

hold for sequences of complete distributions, but also for certain sequences of incomplete

distributions if cn converges slow enough (see Theorem 2 below). In other words, under

certain sequences of incomplete distributions, we get a consistent estimator of g0. Therefore,

if the main goal is to estimate g0 consistently, controlling size uniformly over all incomplete

distributions is not necessary. These findings contrast results in the linear IV model, where

any sequence of distributions under which identification fails (that is cov(X,Z) = 0), leads

to an inconsistent estimator of the slope coefficient.

Instead, another implication of Theorem 1 is that for any α > 0, ε > 0, and δ > 0,

P (‖ĝ − g0‖c ≥ ε) ≥ δ

implies that

P
(
nT̂ ≥ cn | ‖ĝ − g0‖c ≥ ε

)
≤ α

for all n large enough and any P ∈ P . Thus, the test controls size uniformly over certain

distributions for which ĝ is not a consistent estimator. Finally, since fixed incomplete distri-

butions do not yield a consistent estimator, it also follows that P (nT̂ ≥ cn) → 0 for every

fixed incomplete distribution.

Clearly, the rate conditions in Theorem 1 are satisfied if cn diverges very fast. In this

case, regardless of whether or not the estimator is consistent, P (nT̂ ≥ cn)→ 0. The results

are most interesting if cn diverges slowly and if εn converges to 0 slowly. In this case,

P (nT̂ ≥ cn) > δ > 0 and thus ‖ĝ − g0‖c
p→ 0 for a large class of complete distributions. To

state this result formally, let

κn = inf
g∈ḠJ (εn):‖g‖c=1

∫ (∫
g(x)fJ(x, z)dx

)2

dz,

where fJ is the series approximation of fXZ . With these definitions, we get the following

result.

Theorem 2. Suppose Assumptions 1 - 5 hold. For all distributions for which

nκn
J2 ln(ln(n))

→∞ and
nκn
cn
→∞

we have

P
(
nT̂ ≥ cn

)
→ 1.
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To better understand the rate conditions, first suppose that εn is fixed and that cn =

J ln(n). Next notice that,5

κn = inf
g∈ḠJ (εn):‖g‖c=1

∫ (∫
fJ(x, z)gJ(x)

)2

dz

= inf
g∈ḠJ (εn):‖g‖c=1

∫ (∫
((fJ(x, z)− fXZ(x, z))gJ(x) + fXZ(x, z)gJ(x)) dx

)2

dz

≥ inf
g∈Ḡ(εn):‖g‖c=1

3

4

∫ (∫
fXZ(x, z)g(x)dx

)2

dz

− sup
g∈Ḡ(εn):‖g‖c=1

3

∫ (∫
(fJ(x, z)− fXZ(x, z))g(x)dx

)2

dz.

Since G̃ is compact with respect to ‖ · ‖c, the first term on the right hand side is a fixed

positive constant for any complete distribution, while the second term converges to 0. Hence,

κn is bounded below by a positive constant. Then all rate conditions of Theorems 1 and 2

are satisfied as long as

n

J2 ln(n)
→∞ and

n

J ln(n)
J−2s̄ → 0.(2)

Hence, J has to go to ∞ but it cannot diverge too fast relative to n. Since s̄ ≥ 2, feasible

choices would be J = na, where a ∈ (1/5, 1/2). In this case P (nT̂ ≥ cn) → 1 for any

complete distribution. It now follows that as long as εn converges to 0 slow enough, the rate

conditions in (2) together with Assumptions 1 - 5 imply that

sup
P∈P

P
(
‖ĝ − g0‖c ≥ εn, nT̂ ≥ cn

)
→ 0

and

P
(
nT̂ ≥ cn

)
→ 1

for a large class of complete distributions. The only complete distributions for which the

test then does not reject with probability approaching 1 are the ones for which ajk → 0

as j, k → ∞ extremely rapidly. For those distributions ‖ĝ − g0‖c
p→ 0 very slowly and

if the rate of convergence is slower than εn, the test rejects with probability approaching

0. Also notice that we get P (nT̂ ≥ cn) → 1 and a consistent estimator for sequences of

incomplete distributions. One simple example is a sequence where the density is a series

approximation fJ of a density fXZ corresponding to a complete distribution. For such a

sequence of distributions the previous arguments still apply because κn is still bounded

below by a positive constant.

5Using that (1/2a + 2b)2 = 1/4a2 + 4b2 + 2ab ≥ 0 implies (a + b)2 = a2 + b2 + 2ab ≥ 3/4a2 − 3b2.
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The previous discussion highlight that the slower cn diverges and εn → 0, the larger the

rejection probabilities for distributions for which ĝ is consistent for g0. However, a faster rate

of cn allows εn to go to 0 faster, which strengthens the conclusion in case of rejection. Since

the focus of this paper is on consistency rather than the rate of convergence, the results are

most interesting if cn diverges slowly (at rate J ln(n)) and εn goes to 0 at a logarithmic rate

of n. If the main goal was to find evidence in favor of a certain rate of convergence, εn and

cn can be adjusted accordingly.

An alternative to using a converging εn and a diverging cn is to fix εn and to use a

bootstrap procedure to obtain the critical value. While this reduces the ambiguity of how

to exactly choose εn and cn in finite samples, the test will have a different interpretation as

explained in the next section.

4 Weak instruments and restricted completeness

For a fixed εn = ε the test statistic above tests the null hypothesis

H0 : There is g such that E(g(X) | Z) = 0, ‖g‖s ≤ 2C, and ‖g‖c ≥ ε.

I also showed that if H0 is false, then for any estimator ĝ of g0 in a large class

‖ĝ − g0‖c ≤ op(1) + ε.

In other words, the asymptotic bias of the estimator is smaller than ε. Since, the bias is

guaranteed to be small, this situation could be interpreted as strong instruments. Contrarily,

instruments would then be weak if the bias can be larger than ε. The value of ε depends on

the particular application and on how much bias a researcher considers acceptable. Formally,

we get the following definition.

Definition 1. Let ε > 0 and C > 0 and suppose that ‖g0‖s ≤ C. Instruments are weak if

there is g with ‖g‖s ≤ 2C, ‖g‖c ≥ ε, and E(g(X) | Z) = 0. Instruments are strong if no

such function exists.

This definition of weak instruments is similar to the definition of Stock and Yogo (2005)

in the linear model who also think of weak instruments in terms of properties of estimators.6

6An alternative and commonly used way to define weak instruments in the parametric model is in terms

of sequences of distributions as in Staiger and Stock (1997). This would be difficult in the nonparametric

model, because the singular values of the operator E(· | Z) converge to 0 for both complete and incomplete

distributions. Furthermore, we get a consistent estimator for certain sequences of incomplete distributions.
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They define instruments to be weak if the bias of the TSLS estimator, relative to the bias of

the OLS estimator, could exceed a certain threshold b, e.g. 10%. Both my definition and that

of Stock and Yogo (2005) are based on the bias of estimators, but the parametric definition is

about a relative bias, while I use an absolute bias. An advantage of using the relative bias in

the parametric case is that it helps to separate relevance of the instrument and endogeneity

of the regressor. The reason is that if U is mean independent of X and Z, then the TSLS

estimator is unbiased no matter whether the instruments are strong or weak. Such issues do

not arise with the definition of weak instruments in the nonparametric framework, because

it is based on the identified set rather than a specific estimator. For instance, if X and Z

were independent, instruments would always be weak. Hence, considering the absolute bias

seems more reasonable in this setting.

An alternative, yet equivalent, way of interpreting this definition of weak instruments is

in terms of functions in the identified set. Suppose that both g0 and an alternative function

g1 satisfy the moment conditions of the model and the smoothness restrictions ‖g0‖s ≤ C

and ‖g1‖s ≤ C. Then g ≡ g0 − g1 satisfies E(g(X) | Z) = 0 and ‖g‖s ≤ ‖g0‖s + ‖g1‖s ≤ 2C.

Hence, if the instruments are strong, then ‖g‖c ≤ ε and thus, the consistency norm of the

difference between any two functions in the identified set is smaller or equal to ε.

The following proposition now provides a relationship between weak instruments and the

failure of a restricted version of completeness where all functions g for which E(g(X) | Z) = 0

are restricted to be in

G =

{
g : ‖g‖s ≤ 2C, ‖g‖s ≤

2C

ε
‖g‖c

}
.

Proposition 1. The null hypothesis

H0 : There is g such that E(g(X) | Z) = 0, ‖g‖s ≤ 2C, and ‖g‖c ≥ ε

is equivalent to

H0 : There is g ∈ G such that E(g(X) | Z) = 0 and ‖g‖c > 0.

Proof. Suppose that there is g such that E(g(X) | Z) = 0, ‖g‖s ≤ 2C, and ‖g‖c ≥ ε. Then

‖g‖s ≤ 2C ≤ 2C
ε
‖g‖c. Hence, g ∈ G, E(g(X) | Z) = 0, and ‖g‖c ≥ ε > 0.

Next let g ∈ G such that E(g(X) | Z) = 0 and ‖g‖c > 0. Define g̃ = g · (ε/‖g‖c). Then

‖g̃‖s = ‖g‖s(ε/‖g‖c) ≤ 2C. Hence, E(g̃(X) | Z) = 0, ‖g̃‖s ≤ 2C, and ‖g̃‖c = ε.

The null hypothesis that this restricted version of completeness fails, or equivalently that

the instruments are weak, is testable using the test statistic outlined above with a fixed
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value of εn and a bootstrap critical value instead of a diverging cn.7 In the next subsection,

I describe additional assumptions, the asymptotic properties of T̂ , and the bootstrap.

4.1 Asymptotic properties of T̂

The null hypothesis we would like to test is

H0 : There is g such that E(g(X) | Z) = 0, ‖g‖s ≤ 2C, and ‖g‖c ≥ ε.

In this section, since ε is fixed, I define Ḡ = {g : ‖g‖s ≤ (2C/ε)} and the corresponding

sieve space ḠJ . Just as before, for any g ∈ Ḡ we can write g =
∑∞

j=1 hjφj(x) and gJ(x) =∑J
j=1 hjφj(x) denotes the projection of g on the sieve space. Recall the test statistic

T̂ = inf
g∈ḠJ :‖g‖c=1

∫ (∫
g(x)f̂XZ(x, z)dx

)2

dz

and the operator

S0(g) =

∫ (∫
g(x)fXZ(x, z)dx

)2

dz.

I will focus on the case where the space of functions {g : ‖g‖s < ∞} is a Hilbert space,

with inner product 〈·, ·〉s, so that I can make use of concepts such as orthogonality. The

assumption holds for example if the strong norm is a Sobolev norm.

Assumption 6. Let S = {g : ‖g‖s <∞}. The function space (S, ‖ · ‖s) is a Hilbert space.

Define the null space of S0 byN = {g ∈ S : S0(g) = 0} and its orthogonal space byN⊥ =

{g ∈ S : 〈g, ḡ〉s = 0 for all ḡ ∈ N}. I now state and discuss the remaining assumptions.

Assumption 7. E(|φk(Xi)|3|φj(Zi)|3) ≤ Cm for all j and k.

Assumption 8. nδn → 0 where

δn = sup
g∈Ḡ:‖g‖c≤1

∫ (∫
g(x)(fJ(x, z)− fXZ(x, z))dx

)2

dz.

Assumption 9. For any C̄ > 0, there exists some constant Ct such that

inf
gJ∈S:g∈N⊥,‖gJ‖c≥ C̄

J
√

ln(n)
,‖gJ‖s≤(2C/ε)

∫ (∫
fJ(x, z)gJ(x)dx

)2

dz ≥ CtJ
2 ln(n)√
n

.

7See Appendix B.1 for an example illustrating testability with these smoothness restrictions.
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Assumption 10. Define

HJ = {gJ ∈ ḠJ : gJ = g1
J + g2

J , ‖g1
J‖s + ‖g2

J‖s ≤ (2C/ε), ‖g1
J‖c = 1, g1 ∈ N , g2 ∈ N⊥}.

Let h1 and h2 be the coefficients of the series expansions of g1 and g2, respectively. Let W

be a random matrix distributed as the (normal) limiting distribution of
√
n(Â−A). Assume

sup
t≥0

∣∣∣∣P ( min
gJ∈HJ

‖Wh1 +
√
nAh2‖ ≤ t+ dn

)
− P

(
min
gJ∈HJ

‖Wh1 +
√
nAh2‖ ≤ t

)∣∣∣∣ = o(1)

for all dn such that dn → 0.

Assumption 7 is a moment condition, which holds for example if the basis functions are

bounded or if
∫
|φj(x)|3dx is bounded uniformly over j. Assumption 8 implies that J →∞

as n→∞ fast enough relative to n. Assumption 9 says that J cannot converge too fast. It

directly implies for example that J2 ln(n)√
n
→ 0 as n→∞. The assumptions hold as long as s̄ is

large enough relative to the smoothness of the density, which is similar to other assumptions

in the nonparametric IV literature. These assumptions allow for both severely and mildly

ill-posed problems. Appendix B.2 contains a detailed explanation of these assumptions.

Assumption 10 is a continuity condition on the asymptotic distribution. It holds as long as

the restrictions in Ḡ are strong enough, in particular as long as hj converges to 0 fast enough.

We now get the following result, which characterizes the asymptotic distribution of the

test statistic.

Theorem 3. Suppose Assumptions 1 - 10 hold and J/n→ 0. Then under H0

sup
t≥0

∣∣∣∣P (nT̂ ≤ t
)
− P

(
min
gJ∈HJ

‖Wh1 +
√
nAh2‖2 ≤ t

)∣∣∣∣ = o(1).

4.2 Bootstrap critical value

Simply resampling the data, using a bootstrap analog of the test statistic, and using the

resulting quantiles as critical values does not control size, even for a fixed distribution of

the data. The reason is that the population version of the test statistic might have multi-

ple solutions and the asymptotic distribution changes discontinuously with the number of

solutions. Instead, the critical value I use is the 1−α quantile of nT ∗, denoted by c∗α, where

T ∗ = min
gJ∈S:gJ=g1

J+g2
J ,‖g

1
J‖s+‖g2

J‖s≤(2C/ε),‖g1
J‖c=1,‖g2

J‖c≤λn
‖(A∗ − Â)h1 + Âh2‖2 +

µn
n
‖Âh1‖2,
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A∗ is the bootstrap analog of Â,

µn
n
→ 0 and

√
n

µn
→ 0,

and λn = C̄/(J
√

ln(n)) for some constant C̄ > 0. The penalty function guarantees that

minimizing the penalized objective is asymptotically equivalent to minimizing over g1
J such

that g1 ∈ N (in the sense that the error is op(1)). Moreover, since µn converges slow enough,

the penalty will then not affect the asymptotic distribution under H0, but we get consistency

against a fixed alternative. The constraint ‖g2
J‖c ≤ C̄/(J

√
ln(n)) is needed because Â has

full rank even if A does not, which is the reason why a standard nonparametric bootstrap

procedure does not control size. It ensures that

‖(A∗− Â)h1 + Âh2‖ = ‖(A∗− Â)h1 +Ah2 + (A− Â)h2‖ = ‖(A∗− Â)h1 +Ah2‖+ op(1/
√
n),

which then also allows us to restrict g2 ∈ N⊥ (and thus gJ ∈ HJ) without affecting the

asymptotic distribution. The formal result is now as follows.

Theorem 4. Suppose Assumptions 1 - 10 hold. Then under H0

sup
t≥0

∣∣∣∣P ∗ (nT ∗ ≤ t)− P ∗
(

min
gJ∈HJ

‖W ∗h1 +
√
nAh2‖2 ≤ t

)∣∣∣∣ = o(1),

where W ∗ is a random matrix distributed as the limit distribution of
√
n(A∗− Â) under P ∗.

It follows that under H0

P (nT̂ ≥ c∗α)→ α.

Moreover under any fixed alternative

P (nT̂ ≥ c∗α)→ 1.

Remark 1. The previous result is pointwise for each distribution P and (most likely) does

not hold uniformly over P (all distributions satisfying Assumption 1). To be precise, I expect

that the test does not control size for some sequences of distributions for which

inf
gJ∈S:g∈N⊥,‖gJ‖c≥ 1

J
√

ln(n)
,‖gJ‖s≤(2C/ε)

∫ (∫
fJ(x, z)gJ(x)dx

)2

dz ≥ CtJ
2 ln(n)√
n

is violated. The finite dimensional analog of the test statistic is the minimum eigenvalue

of a matrix, where the minimum population eigenvalue is 0. A violation of the previous
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inequality in this case would occur if one or more population eigenvalues were close to 0.

This issue is unrelated to the nontestability result of Canay et al. (2013), who say that,

without restrictions on G, having both uniform size control and consistency against a fixed

alternative is not possible. In fact, it can be seen from the proofs of Theorems 1 and 2 that

under H0,

sup
P∈P

nT̂ ≤ J2 ln(n)

almost surely as n→∞. Contrarily, for any fixed complete distribution,

nT̂ ≥ c
(
n− J2 ln(ln(n))

)
for some constant c. Hence, a critical value of J2 ln(n) and n

J2 ln(n)
→ ∞ would control size

uniformly and yield consistency against fixed alternatives. The lack of uniformity here is

due to the difficulty of obtaining critical values for a test statistic which is the minimum of

a random function and where the population minimum might not be unique. This problem

could potentially be solved using an approach along the lines of recent work by Bugni, Canay,

and Shi (2014), which is left for future research.

5 Choice of norms

In this section I discuss classes of functions which satisfy Assumption 2. I also show how C

can be chosen in particular applications and that it can be implied by economic theory.

5.1 Compact function spaces

The most commonly used consistency norms are the L2-norm, ‖g‖c =
(∫

g(x)2dx
)1/2

, and

the sup-norm, ‖g‖c = supx |g(x)|. Suppose that the consistency norm is the L2-norm. Then,

as shown in Section 3.2, a convenient choice for the strong norm ‖ · ‖s is the Sobolev norm

‖g‖s =

√ ∑
0≤λ≤m

∫
(Dλg(x))2 dx,

where m ≥ 1 and Dλ denotes the λ weak derivative of the function g(x). If instead the

consistency norm is the sup-norm, one could either use the Sobolev norm above or the

Hölder norm

‖g‖s = max
0≤|λ|≤m

sup
x∈(0,1)

|∇λg(x)|+ sup
x1,x2∈(0,1)

|∇mg(x1)−∇mg(x2)|
|x1 − x2|ν

,
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where ∇λg(x) denotes the λ derivative of the function g(x), and 0 < ν ≤ 1. In the first case,

G̃ is a Sobolev space while in the second case, G̃ is a Hölder space. Similar as the strong

norm, the consistency norm could also be defined using derivatives of higher order.

In all these cases it can be shown that G̃ is compact under ‖ · ‖c. See Freyberger and

Masten (2014) for an overview of the compactness results. Moreover, it is easy to see that

with these choices ‖g‖2
c ≥

∫
g(x)2dx. Note, however, that while a Hölder space could be

used in Theorems 1 and 2, it does not satisfy Assumption 6.

5.2 Example of norm bound

One assumption which is maintained throughout the paper is that ‖g0‖s ≤ C. As a con-

sequence, the test involves a constraint on the strong norm and C needs be chosen by the

researcher. I now explain how this can be done in two popular examples, namely estimation

of Engel curves and demand functions.

Let X∗ be total household expenditure and let X = log(X∗). Let Y ∗ be the total

expenditure on a certain good, such as food, and define Y = Y ∗

X∗
, which is the expenditure

share. Let Z be the gross earnings of the head of the household. This setup is studied by

Blundell et al. (2007) and Santos (2012) among others. A reasonable assumption is that if a

household increases total expenditure by $δ, the total expenditure on food does not increase

by more than $δ and it does not decrease.

If X∗ = X̄∗ and if we want to increase log(X̄∗) to log(X̄∗) + δ, then we need to increase

X∗ by X̄∗(exp(δ)− 1). Then the total expenditure is X̄∗ exp(δ) and expenditure on food is

not more that Y ∗ + X̄∗(exp(δ) − 1) and not less than Y ∗ In other words, for any X∗, the

derivative of the Engel curve is bounded above by

lim
δ→0

Y ∗+X∗(exp(δ)−1)
X∗ exp(δ)

− Y ∗

X∗

δ
= lim

δ→0

Y ∗(1−exp(δ))+X∗(exp(δ)−1)
X∗ exp(δ)

δ
= lim

δ→0

(exp(δ)− 1)

δ exp(δ)

X∗ − Y ∗

X∗
≤ 1

since
∣∣X∗−Y ∗

X∗

∣∣ ≤ 1 and limδ→0
(exp(δ)−1)
δ exp(δ)

= 1. Similarly, the derivative is bounded below by

lim
δ→0

Y ∗

X∗ exp(δ)
− Y ∗

X∗

δ
= lim

δ→0

Y ∗(1−exp(δ))
X∗ exp(δ)

δ
= lim

δ→0
−(exp(δ)− 1)

δ exp(δ)

Y ∗

X∗
≥ −1.

If X ∈ [a, b] we can use the regressor (X − a)/(b− a) ∈ [0, 1] . Then sup |g′0(x)| ≤ b− a
and clearly sup |g0(x)| ≤ 1. Let

‖g0‖s = sup
x
|g0(x)|+ sup

x1,x2

|g0(x1)− g0(x2)|
|x1 − x2|

.
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Then ‖g0‖s ≤ 1 + b− a and we can choose C = 1 + b− a. If instead

‖g0‖s =

(∫ (
g0(x)2 + g′0(x)2

)
dx

)1/2

,

we get ‖g0‖s ≤
√

1 + (b− a)2.

If g0(x) is a demand function, then one can use bounds on price elasticities, and bounds

on the support of quantity and price. In this way, one can obtain bounds on the derivatives

and function values of the demand function using similar arguments as above.

6 Extension to functions on R

The analysis could be extended to functions on R by using weighted norms. In this section, I

provide the main ideas including specific examples of norms which satisfy compactness, and

the test statistic. Let w(x) = e−x
2

and let φj(x) be Hermite polynomials (see for example

Chen 2007) so that ∫
φj(x)2w(x)dx = 1

and for j 6= k ∫
φk(x)φj(x)w(x)dx = 0.

Let the consistency norm be the weighted L2-norm

‖g‖c =

√∫
g(x)2w(x)dx.

Then for every function g for which
∫
g(x)2w(x)dx <∞, we can write

g(x) =
∞∑
j=1

hjφj(x),

where hj ≡
∫
g(x)φj(x)w(x)dx. Moreover, if fXZ(x, z) is square integrable, we can write

fXZ(x, z) =
∞∑
j=1

∞∑
k=1

ajkφj(x)φk(z)

where

ajk =

∫
fXZ(x, z)φj(x)φk(z)w(x)w(z)dx = E(φj(X)φk(Z)w(X)w(Z)).

Hence, we can estimate ajk by

âjk =
1

n

n∑
i=1

φj(Xi)φk(Zi)w(Xi)w(Zi)
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and fXZ by

f̂XZ(x, z) =
J∑
j=1

J∑
k=1

âjkφj(x)φk(z).

Now let

S0(g) =

∫ (∫
g(x)fXZ(x, z)w(x)dx

)2

w(z)dz

=

∫ (∫
g(x)w(x)1/2fXZ(x, z)w(x)1/2w(z)1/2dx

)2

dz.

It can be shown that S0(g) is continuous in g under ‖ · ‖c as long as |fXZ(x, z)| ≤ Cd. With

this choice of the consistency norm, we get a compact parameter space for example if

‖g‖s =

√∫ ∑
0≤λ≤m

(Dλg(x))2 w̃(x)dx,

where w̃(x) = (1 + x2)−δ for any δ > 0 and Dλg(x) denotes the λ weak derivative of g. See

Freyberger and Masten (2014) for the formal compactness result, which builds on results of

Gallant and Nychka (1987). With these norms we can define the parameter spaces G̃ and G
just as before. Notice that in this case, we would assume that ‖g0‖s ≤ C. Hence, g0 could

be unbounded and it could have unbounded derivatives.

Interestingly, with these choices of norms, the constraints and the objective function are

again easy to implement because

‖g‖2
c =

∫ ( ∞∑
j=1

hjφj(x)

)2

w(x)dx =
∞∑
j=1

h2
j

as before. Moreover, when we approximate g with gJ =
∑J

j=1 hjφj(x) we get

Ŝ(gJ) =

∫ (∫ J∑
j=1

hjφj(x)
J∑
j=1

J∑
k=1

âjkφj(x)φk(z)w(x)dx

)2

w(z)dz = h′Â′Âh.

Due to continuity of S0(g) and compactness of the parameter space, it again holds that

the infimum of S0(g), over all functions in G̃ with a consistency norm of εn, is nonzero if and

only if

H0 : There is g such that E(g(X) | Z) = 0, ‖g‖s ≤ 2C, and ‖g‖c ≥ εn

holds. This result, combined with similar assumptions as those in this paper, can be used

to link the outcome of the test to consistency of the estimator. Notice that the consistency
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result, analogous to that of Theorem 1, will hold with respect to the weighted L2-norm.

Consistency in this norm would for example imply consistency in the L2-norm over any

compact subset of the support. Finally, weak instruments can be defined (and tested for)

just as in Section 4. The definition of weak instruments would imply that instruments are

strong if the bias in the weighted L2-norm is smaller than some ε.

7 Monte Carlo simulations

In this section, I illustrate the finite sample properties of the test and the estimator using two

types of distributions of X and Z. First, I consider a sequence of incomplete distributions

which converges to a complete distribution. Second, I consider a sequence of complete

distributions which converges to an incomplete distribution. In both cases I use the norms

‖g‖2
c =

∫ 1

0

g(x)2dx and ‖g‖2
s =

∫ 1

0

(
g(x)2 + g′(x)2

)
dx.

As basis functions I use Legendre polynomials normalized such that they are orthonormal

on [0, 1]. All results are based on 1000 Monte Carlo simulations.

For the first example let

fXZ(x, z) =
∞∑
j=1

djjϕj(x)ϕj(z),

where d11 = 1, ϕ1(x) = 1, djj =
√

0.2(j−1)−2, and ϕj(x) =
√

2 cos((j−1)πx) for j ≥ 2. This

example is taken from Horowitz (2011) and from the arguments in Appendix B.2 it follows

that the distribution is complete. Let fkXZ(x, z) be defined as fXZ(x, z) but with dkk = 0

for some k ≥ 2. Notice that fkXZ(x, z) does not satisfy completeness without restrictions

on G. Also notice that with all these distributions the marginal distributions of X and Z

are uniform on [0, 1]. Figure 1 shows plots of FX|Z(x; z) and F k
X|Z(x; z) as functions of x for

different values of k. In the first panel z = 0.1, in the second z = 0.5, and in the third z = 0.9.

The different shapes indicate that X and Z are not independent, and the dependence is least

obvious when d22 = 0. The figure also illustrates that FX|Z(x; z), F 4
X|Z(x; z), and F 5

X|Z(x; z)

are almost identical. Although the differences are very small, they do exist. For example

FX|Z(0.6; 0.9) = 0.3308, F 5
X|Z(0.6; 0.9) = 0.3294, and F 4

X|Z(0.6; 0.9) = 0.3271. Under these

three distributions the correlation between X and Z is approximately 0.44. In case d22 = 0,

the correlation is only −0.0135.
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I simulate the data by taking draws Zi and U1
i from the uniform distribution on [0, 1] (the

marginal distribution of Z). I then choose Xi which satisfies F k
X|Z(Xi;Zi) = U1

i . Moreover,

g0(x) =
1

2
exp(x)− x3

and I set

Yi = g0(Xi) + Ui,

where Ui = 0.01U1
i −U2

i and U2
i ∼ N(1/200, 0.12). Then Ui and Xi are not independent and

var(Ui) ≈ 0.01, which is similar as in Horowitz (2011). With this choice ‖g0‖s = 0.9065 and

I set C = 2. I choose εn = 1/(2 ln(n)1/3) and I set cn = J ln(n)/10. I divide by 10 because

κn tends to be small and thus, without the division, the test tends to be too conservative.

Table 1 shows P (‖ĝ − g0‖c ≥ εn, nT̂ ≥ cn), P (‖ĝ − g0‖c ≥ εn), and P (nT̂ ≥ cn) for

(n, J) = (1000, 3) and (n, J) = (5000, 4). When n = 1000 and J = 3, P (nT̂ ≥ cn) is close

to 95% in the first three cases and close to 0 in the last case. Hence, when J is small, the

test cannot distinguish between the complete and the (very close to complete) incomplete

distributions, but it can distinguish the last distribution. In the first three cases the estimator

has similar properties as well, in particular P (‖ĝ− g0‖c ≥ εn) is quite small, while it is large

in the last case. In all four cases P (‖ĝ − g0‖c ≥ εn, nT̂ ≥ cn) is below 0.16 and it decreases

further as n and J increase. Notice that the basis functions used to construct the densities

and the ones used for the test are different. Thus, in all four cases the J × J matrix A has

full rank for any fixed J and as a consequence, to control size, it is crucial that J → ∞ as

n→∞. When n = 5000 and J = 4, the rejection probability decreases when d22 = 0. More

interestingly, now the rejection probability with d44 = 0 is only 5.7%, while the rejection

probability for the complete distribution and the one with d55 = 0 is around 85%. That is,

although the distributions are extremely close, the test is able to distinguish them if n and

J are large enough. Nonetheless, P (‖ĝ− g0‖c ≥ εn) is similar in the first three cases and the

difference will show up more noticeably when n and J are even larger. Again, the test cannot

distinguish between the complete distribution and the one with d55 = 0, but the properties

of the estimator are also similar and thus P (‖ĝ − g0‖c ≥ εn, nT̂ ≥ cn) is very small in both

cases. The test can pick up this difference as well when n and J are larger. More generally,

for every n and J there exists a k such that the test cannot distinguish between fkXZ and

fXZ , which illustrates the non-testability result of Canay et al. (2013), but the properties of

the estimator will then also be almost identical under both distributions.

For the second example suppose that X̃ and Z̃ are jointly normally distributed with

means 0, variances 1, and correlation ρ. Let X = Φ(X̃) and Z = Φ(Z̃). Since fX̃Z̃ is
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Figure 1: Distribution functions conditional on Z = 0.1, Z = 0.5, and Z = 0.9, respectively
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Table 1: Probabilities with sequence of incomplete distributions

n = 1000, J = 3 n = 5000, J = 4

Complete P (‖ĝ − g0‖c ≥ εn, nT̂ ≥ cn) 0.152 0.024

P (‖ĝ − g0‖c ≥ εn) 0.166 0.025

P (nT̂ ≥ cn) 0.964 0.848

d55 = 0 P (‖ĝ − g0‖c ≥ εn, nT̂ ≥ cn) 0.155 0.025

P (‖ĝ − g0‖c ≥ εn) 0.171 0.028

P (nT̂ ≥ cn) 0.962 0.846

d44 = 0 P (‖ĝ − g0‖c ≥ εn, nT̂ ≥ cn) 0.148 0.000

P (‖ĝ − g0‖c ≥ εn) 0.165 0.034

P (nT̂ ≥ cn) 0.961 0.057

d22 = 0 P (‖ĝ − g0‖c ≥ εn, nT̂ ≥ cn) 0.083 0.027

P (‖ĝ − g0‖c ≥ εn) 0.752 0.643

P (nT̂ ≥ cn) 0.135 0.055

Table 2: Probabilities with sequence of complete distributions

n = 1000, J = 3 n = 5000, J = 4

ρ = 0.5 P (‖ĝ − g0‖c ≥ εn, nT̂ ≥ cn) 0.029 0.000

P (‖ĝ − g0‖c ≥ εn) 0.029 0.000

P (nT̂ ≥ cn) 1.000 1.000

ρ = 0.3 P (‖ĝ − g0‖c ≥ εn, nT̂ ≥ cn) 0.186 0.009

P (‖ĝ − g0‖c ≥ εn) 0.287 0.133

P (nT̂ ≥ cn) 0.737 0.144

ρ = 0.1 P (‖ĝ − g0‖c ≥ εn, nT̂ ≥ cn) 0.067 0.000

P (‖ĝ − g0‖c ≥ εn) 0.653 0.417

P (nT̂ ≥ cn) 0.129 0.005

ρ = 0 P (‖ĝ − g0‖c ≥ εn, nT̂ ≥ cn) 0.017 0.005

P (‖ĝ − g0‖c ≥ εn) 0.816 0.779

P (nT̂ ≥ cn) 0.024 0.006
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complete if and only if ρ > 0 and since completeness is preserved under strictly monotone

transformations, also fXZ is complete if and only if ρ > 0. In case ρ = 0, X and Z are

independent. The function g0 is defined just as before, and I also make use of the same

parameter choices. Table 2 shows the outcomes for different choices of ρ, n, and J . As

expected, P (‖ĝ − g0‖c ≥ εn) decreases and P (nT̂ ≥ cn) increases as ρ increases. When

ρ = 0.5, we reject with probability close to 1 and the estimator is close to g0 with large

probability. Contrarily, when ρ = 0, we reject with probability close to 0 and P (‖ĝ− g0‖c ≥
εn) is large. Furthermore, P (‖ĝ − g0‖c ≥ εn, nT̂ ≥ cn) is very small when n = 5000 and

J = 4 for all ρ. While P (‖ĝ − g0‖c ≥ εn) decreases as n increases for all ρ > 0, P (nT̂ ≥ cn)

decreases as n increases for ρ = 0.1 and ρ = 0.3. If ρ = 0.1, P (‖ĝ− g0‖c ≥ εn) is quite large,

so having a low rejection probability is desirable. If ρ = 0.3, P (‖ĝ − g0‖c ≥ εn) is small, so

ideally we would like to reject in more cases. One reason for this feature is that the dimension

of A increases as J increases and consequently, the minimum eigenvalue gets smaller. Thus,

for a fixed n, the power decreases as J increases and the finite sample power might decrease

when both n and J increase (see also the first example). Here J might be too large relative

to the sample size, which is sensible because the data is based on a transformation of the

normal distribution which is a very smooth. The properties improve when n = 20, 000 and

J = 4. Then with ρ = 0.3 we get P (nT̂ ≥ cn) = 0.429, P (‖ĝ − g0‖c ≥ εn) = 0.019 and

P (‖ĝ − g0‖c ≥ εn, nT̂ ≥ cn) = 0.007.

8 Conclusion

This paper provides the first positive testability result for the identification condition in a

nonparametric IV model by linking the properties of the test to consistency of an estimator

ĝ for the structural function g0. Specifically, I present a test statistic and an estimator such

that uniformly over a large class of distributions, the joint probability that ‖ĝ − g0‖c ≥ ε

and that the test rejects goes to 0, for any ε > 0. It follows that for any sequence of

distributions for which the test rejects with probability bounded away from 0, ĝ will be

consistent for g0. Interestingly, not only is this the case for complete distributions but

also for certain sequences of incomplete ones. These findings contrast results in the linear

IV model, where any sequence of distributions under which identification fails, leads to an

inconsistent estimator of the slope coefficient. However, in case of incomplete distributions,

the resulting estimator of g0 might converge at a slower than optimal rate, which suggests

that uniform inference following the test will be problematic, just as in parametric models.
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An alternative would be to use a partial identification robust inference approach, such as

the one proposed by Santos (2012). Even in this case, the results in this paper will be useful

because they provide information about the strength of the instruments and they yield a

consistent estimator of g0, if the instruments are strong enough.

As additional contributions I also provide a definition of weak instruments in the non-

parametric IV model and I show that weak instruments are equivalent to the failure of a

restricted version of completeness. This version of incompleteness, or equivalently weak in-

struments, is testable and I provide a test statistic and a bootstrap procedure to obtain the

critical value. Rejecting this test leads to the conclusion of strong instruments which means

that ‖ĝ−g0‖c ≤ ε+op(1) and ‖g1−g0‖c ≤ ε for all g1 satisfying the moment and smoothness

assumptions. Certain estimators of g0 converge in probability even if g0 is not point identi-

fied. For example, an estimator based on Tikhonov regularization converges to the function

in the identified set, say g∗, with the minimal norm (Florens, Johannes, and Van Bellegem,

2011). This result leads to a potential alternative approach for obtaining confidence intervals

for g0(x). If the instruments are strong and ‖ · ‖c is the sup-norm, a 95% confidence interval

for g∗ can easily be modified to a 95% confidence interval for g0. Specifically, if [L̂(x), Û(x)]

is a 95% confidence interval for g∗(x), then with strong instruments [L̂(x)− ε, Û(x) + ε] is a

95% confidence interval for g0(x).
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A Proofs

A.1 Proof of Theorem 1

Let h ∈ RJ contain the first J coefficients of the series expansion of g0. By Assumption 5,

the definition of ĥ and the triangle inequality∥∥∥Âh− m̂∥∥∥ ≥ ∥∥∥Âĥ− m̂∥∥∥ =
∥∥∥Âh− m̂+ Â(ĥ− h)

∥∥∥ ≥ ∥∥∥Â(ĥ− h)
∥∥∥− ∥∥∥Âh− m̂∥∥∥

and thus

4
∥∥∥Âh− m̂∥∥∥2

≥
∥∥∥Â(ĥ− h)

∥∥∥2

.

Now suppose that nT̂ ≥ cn and ‖ĝ − g0‖c ≥ εn and notice that ‖ĝ − g0‖s ≤ 2C. From

Assumption 5 it follows that

n

ε2
n

∥∥∥Â(ĥ− h)
∥∥∥2

≥ nT̂ ≥ cn

and thus

4
n

ε2
n

∥∥∥Âh− m̂∥∥∥2

≥ cn.

In other words,

sup
P∈P

P
(
‖ĝ − g0‖c ≥ εn, nT̂ > cn

)
≤ sup

P∈P
P

(
4n
∥∥∥Âh− m̂∥∥∥2

≥ cnε
2
n

)
.

Next let m be a J × 1 vector with mk = E(m̂k) and notice that since∥∥∥Âh− m̂∥∥∥ ≤ ‖(Â− A)h‖+ ‖Ah−m‖+ ‖m− m̂‖

we have ∥∥∥Âh− m̂∥∥∥2

≤ 4‖(Â− A)h‖2 + 4 ‖Ah−m‖2 + 4 ‖m− m̂‖2

and thus

P

(
4n
∥∥∥Âh− m̂∥∥∥2

≥ cnε
2
n

)
≤ P

(
16n‖(Â− A)h‖2 + 16n ‖Ah−m‖2 + 16n ‖m− m̂‖2 ≥ cnε

2
n

)
≤ P

(
48n‖(Â− A)h‖2 ≥ cnε

2
n

)
+ P

(
48n ‖Ah−m‖2 ≥ cnε

2
n

)
+P

(
48n ‖m− m̂‖2 ≥ cnε

2
n

)
.

It now suffices to prove that all three terms on the right hand side converge to 0 uniformly

over P ∈ P .
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To show that the first term converges to 0 uniformly over P ∈ P , write

n‖(Â− A)h‖2 =
J∑
j=1

(
J∑
k=1

√
n(âjk − ajk)hk

)2

and notice that

J∑
k=1

√
n(âjk − ajk)hk =

1√
n

n∑
i=1

J∑
j=1

(φk(Xi)φj(Zi)− E(φk(Xi))φj(Zi))hk

and

V ar

(
J∑
k=1

(φk(Xi)φj(Zi)− E(φk(Xi))φj(Zi))hk

)
≤ max

k=1,...,J
E(φk(Xi)

2φj(Zi)
2)

(
J∑
k=1

|hk|

)2

.

Assumptions 2 and 4 imply that |hk| ≤ Cgk
−2 (see Appendix B.2 for a derivation). Moreover,

by Assumptions 1 and 3

E(φk(Xi)
2φj(Zi)

2) ≤ Cd

∫ ∫
φk(x)2φj(z)2dxdz = Cd

It follows that

V ar

(
J∑
k=1

(φk(Xi)φj(Zi)− E(φk(Xi))φj(Zi))hk

)
≤ σ2

where

σ2 = CdC
2
g

(
∞∑
k=1

k−2

)2

<∞.

By Markov’s inequality

sup
P∈P

P
(

48n‖(Â− A)h‖2 ≥ cnε
2
n

)
≤ 48Jσ2

cnε2
n

→ 0.

Similarly,

‖
√
n(m− m̂)‖2 =

J∑
k=1

(√
n(m̂k −mk)

)2
=

J∑
k=1

(
1√
n

n∑
i=1

(Yiφk(Zi)− E(Yiφk(Zi)))

)2

and by Assumptions 1 and 3

E

( 1√
n

n∑
i=1

(Yiφk(Zi)− E(Yiφk(Zi)))

)2
 ≤ 1

n

n∑
i=1

E
(
Y 2
i φk(Zi)

2
)
≤ σ2

YCd.

It follows from Markov’s inequality that

sup
P∈P

P
(
48n‖m− m̂‖2 ≥ cnε

2
n

)
≤ 48Jσ2

YCd
cnε2

n

→ 0.
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Next write

‖Ah−m‖2 =
J∑
j=1

(
J∑
k=1

ajkhk −mj

)2

.

Since
∞∑
j=1

(
∞∑
k=1

ajkhk −mj

)2

= 0

it holds that

mj =
∞∑
k=1

ajkhk.

Therefore

‖Ah−m‖2 =
J∑
j=1

(
J∑
k=1

ajkhk −mj

)2

=
J∑
j=1

(
∞∑

k=J+1

ajkhk

)2

≤
∞∑
j=1

(
∞∑

k=J+1

ajkhk

)2

=

∫ (∫
fXZ(x, z) (g(x)− gJ(x)) dx

)2

dz

≤
∫ ∫

fXZ(x, z)2dxdz

∫
(g(x)− gJ(x))2 dx

≤ C2
dC

2
gC

2
oJ
−2s̄

where the last inequality follows from Assumptions 2 and 4. Thus,

sup
P∈P

P
(
48n ‖Ah−m‖2 ≥ cnε

2
n

)
≤ sup

P∈P
P
(
C2
dC

2
gC

2
oJ
−2s̄n ≥ cnε

2
n

)
→ 0.

We can conclude that

sup
P∈P

P
(
‖ĝ − g0‖c ≥ εn, nT̂ > cn

)
→ 0.

A.2 Proof of Theorem 2

First notice that

‖Âh‖2 ≥ 3

4
‖Ah‖2 − 3‖(Â− A)h‖2.

For any gJ ∈ ḠJ(εn) with ‖gJ‖c = 1, let h ∈ RJ be the coefficients of the series expansion.

Then

‖Ah‖2 =

(∫
fJ(x, z)gJ(x)

)2

dz ≥ κn.
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Also notice that

‖(Â− A)h‖2 =
J∑
j=1

(
J∑
k=1

(âjk − ajk)hk

)2

≤ Co

J∑
j=1

J∑
k=1

(âjk − ajk)2

for all h with ‖h‖2 ≤ Co It follows that

nT̂ ≥ inf
g∈Ḡ(εn):‖g‖c=1

3

4
n‖Ah‖2 − sup

g∈Ḡ(εn):‖g‖c=1

3n‖(Â− A)h‖2

≥ 3

4
nκn − 3Co

J∑
j=1

J∑
k=1

(√
n(âjk − ajk)

)2
.

Since
√
n(âjk − ajk) =

1√
n

n∑
i=1

(φk(Xi)φj(Zi)− E(φk(Xi))φj(Zi))

and

V ar (φk(Xi)φj(Zi)− E(φk(Xi))φj(Zi)) ≤ Cd,

the law of iterated logarithm implies that

3Co

J∑
j=1

J∑
k=1

(√
n(âjk − ajk)

)2 ≤ 3CoCdJ
2 ln(ln(n))

almost surely and thus

nT̂ ≥ 3

4
nκn − 3CoCdJ

2 ln(ln(n)).

Therefore for n and J large enough

P (nT̂ ≥ cn) ≥ P
(
(3/4)nκn − 3CoCdJ

2 ln(ln(n)) ≥ cn
)

→ 1.

A.3 Proof of Theorem 3

Let C̄ denote a generic constant that may differ in different uses. Let gJ be a series approx-

imation of a function g such that S0(g) = 0, ‖g‖c = 1 and ‖g‖s ≤ (2C/ε). Such a function

exists under the null hypothesis and the series approximation gJ , divided by its consistency

norm, is feasible by Assumption 5. Let h ∈ RJ be the vector containing the coefficients of

this normalized series approximation. Then

n‖Âh‖2 = n‖(Â− A)h+ Ah‖2 ≤ 2‖
√
n(Â− A)h‖2 + 2n‖Ah‖2.
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Notice that

‖Ah‖2 =

∫ (∫
fJ(x, z)gJ(x)dx

)2

dz

=

∫ (∫
fJ(x, z)g(x)dx

)2

dz

=

∫ (∫
(fJ(x, z)− fXZ(x, z))g(x)dx

)2

dz

≤ δn.

The third line follows because S0(g) = 0. Assumption 8 implies that n‖Ah‖2 → 0. Moreover,

notice that
√
n(âjk−ajk) converges to a normally distributed random variable for each j and

k by Assumptions 1 and 7. Also notice that the proof of Theorem 2 implies that for some

constant C̄ it holds almost surely that 2‖
√
n(Â− A)h‖2 ≤ C̄J2 ln(ln(n)). It follows that

nT̂ ≤ 2C̄J2 ln(ln(n)).

With this result, we can restrict the class of functions we need to minimize over. In particular

recall the sets S = {g : ‖g‖s <∞}, the null space of S0, namely N = {g ∈ S : S0(g) = 0},
and the orthogonal spaceN⊥ = {g ∈ S : 〈g, ḡ〉s = 0 for all ḡ ∈ N}. Since (S, ‖·‖s) is Hilbert

space by Assumption 6, and since N is a closed linear subspace of S, it follows that we can

decompose any g ∈ S as

g = g1 + g2,

where g1 ∈ N and g2 ∈ N⊥. If ‖g‖s ≤ (2C/ε), we get ‖g1‖s + ‖g2‖s ≤ (2C/ε), and thus

both ‖g1‖s ≤ (2C/ε) and ‖g2‖s ≤ (2C/ε). Now for each g ∈ Ḡ with ‖g‖c = 1, the series

approximation can be written as gJ = g1
J + g2

J with coefficients h = h1 + h2 ∈ RJ . Also

notice that by the previous arguments

√
n‖Âh‖ =

√
n‖Âh1 + Âh2‖

≥
√
n‖Âh2‖ −

√
n‖Âh1‖

≥
√
n‖Ah2‖ −

√
n‖(Â− A)h2‖ −

√
3C̄J2 ln(ln(n))

≥
√
n‖Ah2‖ − 3

√
C̄J2 ln(ln(n)).

Since any optimal gJ needs to satisfy
√
n‖Âh‖ ≤

√
2C̄J2 ln(ln(n)) it follows that

5
√
C̄J2 ln(ln(n)) ≥

√
n‖Ah2‖.

Next notice that

‖Ah2‖2 =

∫ (∫
fJ(x, z)g2

J(x)dx

)2

dz.
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Now suppose ‖g2
J‖c ≥ C̄

J
√

ln(n)
for some C̄ > 0. Then since ‖g2

J‖s ≤ (2C/ε), Assumption 9

implies that

‖Ah2‖2 ≥ CtJ
2 ln(n)√
n

.

But we also have

‖Ah2‖2 ≤ 25C̄J2 ln(ln(n))

n
,

which is a contradiction for n large enough. Define λn = C̄

J
√

ln(n)
. Then

‖g2
J‖c ≤ λn → 0.

Let

H̃J = {gJ ∈ ḠJ : gJ = g1
J + g2

J , ‖g1
J‖s + ‖g2

J‖s ≤ (2C/ε), ‖gJ‖c = 1, S0(g1) = 0, g2 ∈ N⊥}.

It follows that almost surely√
nT̂ = min

gJ∈H̃J

‖
√
n(Â− A)(h1 + h2) +

√
nA(h1 + h2)‖

= min
gJ∈H̃J

‖
√
n(Â− A)h1 +

√
nAh2 +

√
nAh1 +

√
n(Â− A)h2‖

= min
gJ∈H̃J

‖
√
n(Â− A)h1 +

√
nAh2‖+ o(1)

because

‖
√
nAh2‖ ≤

√
nδn → 0

and

‖
√
n(Â− A)h2‖ ≤ C̄

√
ln(ln(n))Jλn → 0

uniformly over all gJ ∈ H̃J . Moreover, the optimal solution will satisfy ‖g2
J‖c ≤ λn.

By Skorokhod’s representation theorem there exists a matrix Wn which has the same

distribution as
√
n(Â − A) and Wn converges to W almost surely. Moreover, since Wn is a

sample average and we assume that the third moment is bounded, the Berry Esseen theorem

implies that Wn = W + Rn, where each element of Wn is O(1/
√
n) and the upper bound

is the same for each element. Also notice that each element of Rnh is bounded in absolute

value by a O(1/
√
n) term uniformly over all h for which ‖g‖c = 1 and ‖g‖s ≤ (2C/ε) because

in this case
∑∞

j=1 |hj| <∞. Therefore,

P

(
min
gJ∈H̃J

‖
√
n(Â− A)h1 +

√
nAh2‖ ≤ t

)
= P

(
min
gJ∈H̃J

‖Wnh
1 +
√
nAh2‖ ≤ t

)
= P

(
min
gJ∈H̃J

‖Wh1 +
√
nAh2 +O(1/

√
n)‖ ≤ t

)
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where the O(1/
√
n) term does not depend on gJ . Also notice that

‖Wh1 +
√
nAh2‖−O(

√
J/n) ≤ ‖Wh1 +

√
nAh2 +O(1/

√
n)‖ ≤ ‖Wh1 +

√
nAh2‖+O(

√
J/n).

Finally recall that ‖g2
J‖c ≤ λn and since ‖g1

J‖c = ‖gJ − g2
J‖c we get

1− λn ≤ ‖g1
J‖c = ‖gJ − g2

J‖c ≤ 1 + λn,

which implies that |‖g1
J‖c − 1| ≤ λn. Putting these results together implies that for some

sequence dn → 0

P

(
min
gJ∈H̃J

‖
√
n(Â− A)h1 +

√
nAh2‖ ≤ t

)
= P

(
min
gJ∈HJ

‖Wh1 +
√
nAh2‖ ≤ t+ dn

)
= P

(
min
gJ∈HJ

‖Wh1 +
√
nAh2‖ ≤ t

)
+ o(1)

where the last equality follows from Assumption 10. Hence, we can conclude that

sup
t≥0

∣∣∣∣P (nT̂ ≤ t
)
− P

(
min
gJ∈HJ

‖Wh1 +
√
nAh2‖ ≤ t

)∣∣∣∣ = o(1).

A.4 Proof of Theorem 4

Recall that

T ∗ = min
gJ∈S:gJ=g1

J+g2
J ,‖g

1
J‖c=1,‖g2

J‖c≤λn,‖g
1
J‖s+‖g2

J‖s≤(2C/ε)
‖(A∗ − Â)h1 + Âh2‖2 +

µn
n
‖Âh1‖2,

where
µn
n
→ 0 and

√
n

µn
→ 0.

The constraint ‖g2‖c ≤ λn is critical here because it guarantees that almost surely

‖
√
n(A∗ − Â)h1 +

√
nÂh2‖ = ‖

√
n(A∗ − Â)h1 +

√
n(Â− A)h2 +

√
nAh2‖

= ‖
√
n(A∗ − Â)h1 +

√
nAh2‖+ o(1)

uniformly over all relevant gJ because as shown in the proof of Theorem 3,

‖
√
n(Â− A)h2‖2 ≤ C̄ ln(ln(n))J2λ2

J → 0.

It follows that nT ∗ is almost surely equal to

min
gJ∈S:gJ=g1

J+g2
J ,‖g

1
J‖c=1,‖g2

J‖c≤λn,‖g
1
J‖s+‖g2

J‖s≤(2C/ε)
‖
√
n(A∗ − Â)h1 +

√
nAh2‖2 + µn‖Âh1‖2 + o(1).
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Now take any feasible g1
J such that S0(g1) = 0 and let g2

J = 0. Then for some constant C̄

‖
√
n(A∗ − Â)h1 +

√
nAh2‖2 + µn‖Âh1‖2 ≤ C̄J2 ln(ln(n)) +

µn
n

(C̄J2 ln(ln(n))) +
µn
n
nδn

≤ 3C̄J2 ln(ln(n)).

Moreover, for g1
J with ‖g1

J‖s ≤ (2C/ε),

√
µn‖Âh1‖ =

√
µn
n
‖
√
n(Â− A)h1 +

√
nAh1‖ ≥ √µn‖Ah1‖ −

√
µn
n

√
C̄J2 ln(ln(n)).

Since any solution has to satisfy

√
µn‖Âh1‖ ≤

√
3C̄J2 ln(ln(n))

it has to hold that

‖Ah1‖ ≤

√
4C̄J2 ln(ln(n))

µn
.

Now let g1
J = ḡ1+ḡ2 = ḡ1

J+ḡ2
J , where S0(ḡ1) = 0 and ḡ2 ∈ N⊥. It follows that ‖g1

J‖s = ‖ḡ1‖s+
‖ḡ2‖s. Hence if ‖ḡ1‖s + ‖ḡ2‖s ≤ (2C/ε), then by Assumption 5 also ‖ḡ1

J‖s + ‖ḡ2
J‖s ≤ (2C/ε).

Then √
4C̄J2 ln(ln(n))

µn
≥ ‖Ah1‖ ≥ ‖Ah̄2‖ − ‖Ah̄1‖.

By Assumption 8,
√
n‖Ah̄1‖ → 0 and thus for n large enough

‖Ah̄1‖ ≤
√

1

µn

√
µn
n

√
n‖Ah̄1‖ ≤

√
2

µn
.

It follows that √
5C̄J2 ln(ln(n))

µn
≥ ‖Ah̄2‖

and since
√
n/µn → 0,

5C̄J2 ln(ln(n))√
n

≥ ‖Ah̄2‖2.

But then Assumption 9 implies that ‖ḡ2
J‖c ≤ λn where λn = C̄

J
√

ln(n)
and the solution will

be the minimizer of

‖
√
n(A∗ − Â)

(
h̄1 + h̄2

)
+
√
nAh2‖2 + µn‖Â(h̄1 + h̄2)‖2

over the set gJ ∈ S such that gJ = ḡ1
J + ḡ2

J +g2
J with ḡ1 ∈ N and ḡ2 ∈ N⊥ and the constraints

‖ḡ1
J‖c = 1 + cn, ‖ḡ2

J‖c ≤ λn, ‖g2
J‖c ≤ λn, ‖ḡ1

J‖s + ‖ḡ2
J‖s + ‖g2

J‖s ≤ (2C/ε),
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where |cn| ≤ λn. But then ḡ2
J affects the objective function asymptotically only through the

penalty because almost surely

‖
√
n(A∗ − Â)h̄2‖2 → 0.

Furthermore, since almost surely

µn‖Âh̄1‖2 → 0

if ḡ2
J affects the penalty asymptotically it will increase the objective function. Moreover, a

nonzero ḡ2
J reduces the constraint set. Thus, it will be optimal to set ḡ2

J = 0. It follows that
√
nT ∗ is asymptotically equivalent to

min
gJ∈S:gJ=ḡ1

J+g2
J ,ḡ

1∈N ,‖ḡ1
J‖c=1+cn,‖g2

J‖c≤λn,‖ḡ
1
J‖s+‖g2

J‖s≤(2C/ε)
‖
√
n(A∗ − Â)h̄1 +

√
nAh2‖+ o(1).

Next write g2
J = g̃1 + g̃2 = g̃1

J + g̃2
J , where g̃1 ∈ N and g̃2 ∈ N⊥. Also here g̃1 does not affect

the objective but does reduce the constraint set if ‖g̃1
J‖s > 0. Therefore, setting g̃1

J = 0 will

be optimal. Hence
√
nT ∗ is asymptotically equivalent to

min
gJ∈S:gJ=ḡ1

J+g̃2
J ,ḡ

1∈N ,g̃2∈N⊥,‖ḡ1
J‖c=1+cn,‖ḡ1

J‖s+‖g̃2
J‖s≤(2C/ε)

‖
√
n(A∗ − Â)h̄1 +

√
nAh̃2‖

or, just as in the proof of Theorem 3, almost surely√
nT̂ = min

gJ∈HJ

‖
√
n(A∗ − Â)h1 +

√
nAh2‖+ o(1).

Now the constraint ‖g2
J‖c ≤ λn will also hold even without imposing it.

Then the same arguments as before show that

sup
t≥0

∣∣∣∣P ∗ (nT ∗ ≤ t)− P ∗
(

min
gJ∈HJ

‖W ∗g1
J +
√
nAg2

J‖2 ≤ t

)∣∣∣∣ = o(1),

where W ∗ is normally distributed. It follows that uniformly over t ≥ 0∣∣∣P ∗ (nT ∗ ≤ t)− P
(
nT̂ ≤ t

)∣∣∣
=

∣∣∣∣P ∗( min
gJ∈HJ

‖W ∗h1 +
√
nAh2‖2 ≤ t

)
− P

(
min
gJ∈HJ

‖Wh1 +
√
nAh2‖2 ≤ t

)∣∣∣∣+ o(1).

Finally notice that W ∗h1 and Wh1 only differ by their covariance which converges at rate

J/
√
n. More precisely denote by Σ(h1) the covariance matrix of Wh1 and let Σ1/2(h1) be

such that Σ1/2(h1)Σ1/2(h1) = Σ(h1). Denote by Σ̂1/2(h1) the corresponding matrix of W ∗h1.

Notice that ∣∣∣Σ̂1/2(h1)− Σ1/2(h1)
∣∣∣ ≤ C̄

√
ln(ln(n))

n
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where the inequality is understood element by element. Let V be a normally distributed

J × 1 vector with identity covariance matrix. It now follows that

P ∗
(

min
gJ∈HJ

‖W ∗h1 +
√
nAh2‖ ≤ t

)
= P ∗

(
min
gJ∈HJ

‖Σ̂1/2(h1)V +
√
nAh2‖ ≤ t

)
= P ∗

(
min
gJ∈HJ

‖Σ1/2(h1)V + (Σ̂1/2(h1)− Σ1/2(h1))V +
√
nAh2‖ ≤ t

)
= P ∗

(
min
gJ∈HJ

‖Σ1/2(h1)V +
√
nAh2‖ ≤ t+O(

√
J ln(ln(n))/n)

)
.

Now by Assumption 10 we get

P ∗
(

min
gJ∈HJ

‖W ∗h1 +
√
nAh2‖ ≤ t

)
= P ∗

(
min
gJ∈HJ

‖Σ1/2(h1)V +
√
nAh2‖ ≤ t

)
+ o(1)

uniformly over t ≥ 0. Therefore∣∣∣α− P (nT̂ ≥ c∗α)
∣∣∣ =

∣∣∣P ∗(nT ∗ ≥ c∗α)− P (nT̂ ≥ c∗α)
∣∣∣ = o(1).

The remaining part is to show that the test is consistent against a fixed alternative.

Under any alternative

‖Âh1‖ ≥ ‖Ah1‖ − ‖(Â− A)h1‖ = ‖Ah1‖+ o(1).

Moreover,

‖Ah‖2 =

∫ (∫
fJ(x, z)gJ(x, z)

)2

dz

=

∫ (∫
((fJ(x, z)− fXZ(x, z))gJ(x) + fXZ(x, z)gJ(x)) dx

)2

dz

≥ 3

4

∫ (∫
fXZ(x, z)gJ(x)dx

)2

dz − 3

∫ (∫
(fJ(x, z)− f(x, z))gJ(x)dx

)2

dz

≥ 3

4
inf

g∈Ḡ:‖g‖c≥1

∫ (∫
f(x, z)g(x)dx

)2

dz − 3δn.

But under any alternative

3

4
inf

g∈Ḡ:‖g‖c≥1

∫ (∫
f(x, z)g(x)

)2

dz > 0

and hence nT̂ diverges at rate n under any alternative.
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Similarly, if h2 = 0, we get

‖(A∗ − Â)h1 + Âh2‖2 +
µn
n
‖Âh1‖2 ≥ C̄

(
J2 ln(ln(n))

n
+
µn
n

)
and thus nT ∗ diverges at most at rate max{J2 ln(ln(n)), µn} under any alternative. But

since n
µn
→∞ and n

J2 ln(ln(n))
→∞ it follows that under any fixed alternative

P (nT̂ ≥ c∗α)→ 1.

B Examples satisfying testability and assumptions

I first illustrate why the failure of a restricted version of completeness, or equivalently weak

instruments, is testable using a class of densities. In then use these densities to illustrate the

technical assumptions.

B.1 Example of density functions

Assumption 1 implies that the density is square integrable. Therefore, we can write

fXZ(x, z) =
∞∑
j=1

∞∑
k=1

ajkφj(x)φk(z),

where ajk =
∫ ∫

fXZ(x, z)φj(x)φk(z)dxdz. Moreover, for any g ∈ L2[0, 1], we can write

g(x) =
∞∑
k=1

hkφk(x),

where hk =
∫
g(x)φk(x)dx. To obtain a tractable example, suppose that ajk = 0 if j 6= k.

Then

fXZ(x, z) =
∞∑
j=1

ajjφj(x)φj(z)

and it can be shown that

S0(g) =
∞∑
j=1

h2
ja

2
jj.

Hence, if ajj = 0 for some j, then S0(φj) = 0 and L2-completeness fails. Contrarily, L2-

completeness holds if ajj 6= 0 for all j. But since fXZ is bounded∫ ∫
fXZ(x, z)2dxdz =

∞∑
j=1

a2
jj ≤ C2

d
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and therefore, a2
jj → 0 as j → ∞. Now let g = φK . Then S0(g) = a2

KK → 0 as K → ∞.

Hence, without the smoothness assumptions, taking the infimum of S0(g) over all functions

in L2[0, 1] with ‖g‖c = 1 yields 0, even if the distribution is complete.

Now for simplicity suppose that ‖g‖2
s =

∫
(g(x)2 + g′(x)2) dx and further suppose that∫

φ′j(x)φ′k(x)dx = 0 if j 6= k, and bj ≡
∫
φ′j(x)φ′j(x)dx→∞ as j →∞. An example of such

a basis would be trigonometric polynomials. While these are simplifying assumptions, used

to obtain a tractable example, all commonly used basis function have the property that the

derivatives get increasingly wiggly as j increases and therefore that bj →∞. The constraint

‖g‖2
s =

∫ (
g(x)2 + g′(x)2

)
dx ≤ (2C/ε)2

can now be written as
∞∑
j=1

h2
j(1 + bj) ≤ (2C/ε)2.

But since bj → ∞, it is not possible to have hK = 1 for large K. In other words, we now

cannot put all weight on very wiggly basis functions. As a consequence of this smoothness

constraint, taking the infimum of S0(g) over all functions in Ḡ with ‖g‖c = 1 does not yield

0 if the distribution is complete.

B.2 Explanation of assumptions

Assumption 1 is easy to interpret, while Assumptions 2 and 6 can be verified with popular

parameter spaces, including Sobolev spaces, as discussed in Section 5.1. Assumptions 3 and

4 are discussed in Chen (2007) and hold for many popular basis functions as long as sufficient

smoothness is imposed. Also notice that Assumptions 2 and 4 imply that for all functions g

satisfying the smoothness restrictions it holds that

∞∑
j=J+1

h2
j =

∫
(g(x)− gJ(x))2dx ≤

C2
g

C0

J−2s̄.

It follows that

h2
J+1 ≤

C2
g

C0

J−2s̄ ≤
C2
g22s̄

C0

(J + 1)−2s̄.

In other words, since the approximation error converges to 0 fast, the coefficients of the series

approximation have to converge to 0 fast. We then also get

∞∑
j=1

|hj|jk ≤
Cg2

s̄

√
C0

∞∑
j=1

j−s̄jk
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Hence for any k < s̄ − 1, the sum on the right converges. In particular, it follows that∑∞
j=1 |hj| < ∞ if s̄ ≥ 2. This result is used in the proof of Theorems 3 and 4. Assumption

7 is a moment condition discussed in Section 4.1.

To obtain more intuition for the remaining assumptions suppose that

fXZ(x, z) =
∞∑
j=1

ajjφj(x)φj(z).

Also suppose, similar as in Section B.1, that ‖gJ‖2
c =

∑J
j=1 h

2
j , ‖gJ‖2

s =
∑J

j=1 h
2
j(1 + bj),

where bj > 0 and bj → ∞ as j → ∞. For example, when ‖ · ‖s is the Sobolev norm,

orthonormal trigonometric polynomials have this structure. Assumption 5, which could be

relaxed at the expense of additional notation, says that if ‖g‖2
s =

∑∞
j=1 h

2
j(1+bj) ≤ (2C/εn)2,

J∑
j=1

h2
j(1 + bj) ≤ (2C/εn)2 and

∑J
j=1 h

2
j(1 + bj)∑J
j=1 h

2
j

≤ (2C/εn)2.

The first inequality clearly holds because bj > 0. Intuitively, the series truncation leaves out

the very wiggly part of g and thus, the truncation has a smaller strong norm. The second

inequality says that this is true even after normalizing by the consistency norm. To see why

this is true rewrite∑J
j=1 h

2
j(1 + bj)∑J
j=1 h

2
j

≤
∑∞

j=1 h
2
j(1 + bj)−

∑∞
j=J+1 h

2
j(1 + bj)

1−
∑∞

j=J+1 h
2
j

≤
(2C/εn)2 −

∑∞
j=J+1 h

2
j(1 + bj)

1−
∑∞

j=J+1 h
2
j

.

Now notice that since bj →∞ as j →∞, it holds that
∞∑

j=J+1

h2
j(1 + bj) ≥

∞∑
j=J+1

h2
j(2C/εn)2

if εn goes not 0 slow enough relative to J . Then∑J
j=1 h

2
j(1 + bj)∑J
j=1 h

2
j

≤
(2C/εn)2 −

∑∞
j=J+1 h

2
j(1 + bj)

1−
∑∞

j=J+1 h
2
j

≤
(2C/εn)2 − (2C/εn)2

∑∞
j=J+1 h

2
j

1−
∑∞

j=J+1 h
2
j

= (2C/εn)2,

which implies that Assumption 5 holds.

For the remaining assumptions suppose that εn is fixed. With the additional structure

on the density and norms we get∫ (∫
g(x)(fJ(x, z)− fXZ(x, z))dx

)2

dz =

∫ (∫ ∞∑
j=1

hjφj(x)
∞∑

j=J+1

ajjφj(x)φj(z)dx

)2

dz

=

∫ ( ∞∑
j=J+1

hjajjφj(z)

)2

dz

=
∞∑

j=J+1

h2
ja

2
jj
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and thus

δn = max
h2
j ,j=1,...,∞

∞∑
j=J+1

h2
ja

2
jj

Subject to
∞∑
j=1

h2
j ≤ 1 and

∞∑
j=1

h2
j(1 + bj) ≤ (2C/ε)2.

It will be optimal to set hj = 0 for j ≤ J . An upper bound for δn can be obtained by

ignoring the first constraint. In these examples, it will be the case that the more smoothness

restrictions we impose on g0, the larger s̄ in Assumption 4, and the faster bj →∞. Then for

a given s̄, the smoother the density, the smaller δn. If for example bj = j2s∗ and ajj = j−r,

then h2
j has to converge faster than j−2s∗−1−η for some η > 0 and thus up to multiplicative

constant

δn ≤
∞∑

j=J+1

j−2(s∗+r)−1−η ≤ (J + 1)−2(s∗+r)
∞∑

j=J+1

j−1−η ≤ C̄J−2(s∗+r)

for some constant C̄. Since δn goes to 0 at rate J−2(s∗+r), it holds that nδn → 0 as long

as J is a polynomial of n and goes to ∞ fast enough. Similarly, if ajj goes to 0 at an

exponential rate, then δn goes to 0 at an exponential rate as well, and nδn → 0 holds even

if J is a logarithmic function of n. Hence, Assumption 8 mainly says that J has to diverge

fast enough relative to n for a given smoothness of g0 and fXZ .

Next notice that ∫ (∫
gJ(x)fJ(x, z)dx

)2

dz =
J∑
j=1

h2
ja

2
jj

To make more sense of Assumption 9, suppose that ajj = 0 if and only if j > J̄ . Then N⊥

consists of all function g such that g =
∑J̄

j=1 hjφj. For those functions and J large enough

‖gJ‖2
c =

∑J̄
j=1 h

2
j and ‖gJ‖2

s =
∑J̄

j=1 h
2
j(1 + bj). Suppose that (1 + bJ̄+1) ≤ (2C/ε)2. In

this example, the density consists of low dimensional basis functions and some of the higher

dimensional basis functions, which are in the null space of S0(·), satisfy the smoothness

restrictions. In this case, we want to solve

min
h2
j ,j=1,...,J̄

J̄∑
j=1

h2
ja

2
jj

subject to
∑J̄

j=1 h
2
j ≥ 1

J2 ln(n)
and

∑J̄
j=1 h

2
j(1+ bj) ≤ (2C/ε)2. Assuming that ajj is a decreas-

ing sequence, the optimal solution is h2
J̄

= 1
J2 ln(n)

in which case the minimum is
a2
J̄J̄

J2 ln(n)
and

we need that
a2
J̄ J̄

J2 ln(n)
≥ CtJ

2 ln(n)√
n
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or
a2
J̄ J̄

√
n

Ct ln(n)2
≥ J4.

This example highlights that the assumption mainly implies that J cannot diverge too fast

relative to n.

Next suppose that ajj = 0 if and only if j = J∗. Ignoring the smoothness restrictions

leads to an optimal solution of aJJ

J2 ln(n)
and we now require

a2
JJ

√
n

Ct ln(n)2
≥ J4.

If a2
JJ = J−2r as before, then √

n

Ct ln(n)2
≥ J4+2r

which again says that J cannot increase too fast relative to n. Also recall that in this case

nδn ≤ C̄nJ−2(s∗+r).

Thus, for both Assumption 8 and 9 to be satisfied, we need that s∗ is large enough relative

to r. In that case, we can pick J such that both assumptions hold. Similar as other papers

that deal with nonparametric IV estimation, these two assumptions link the smoothness of

the density to the smoothness of g0.

C Monte Carlo simulations for weak instruments

I use the same setup as in Section 7, but now I fix ε = 0.05 and I choose the critical

values using the bootstrap procedure described in Section 4.2. I need to select two tuning

parameters and I set λn = 1/(J
√

ln(n)) and µn = n3/4. I use 1000 bootstrap samples. The

nominal size of the test is α = 0.05.

Table 3 shows the actual rejection probabilities when n = 1000 and J = 3 and when

n = 5000 and J = 4 for the first setup. It can be shown that with this choice of ε, the

instruments are weak with either d22 = 0, d44 = 0, or d55 = 0. The table also shows

‖ĝ − g0‖c, the root mean squared error, averaged over the 1000 simulated data sets. When

n = 1000 and J = 3, the rejection probability is close to 90% in the first three cases. Hence,

the test cannot distinguish between the complete and the (very close to complete) incomplete

distributions, but the RMSEs are also identical. When n = 5000 and J = 4, the rejection

probability decreases when d22 = 0, it is 5.9% when d44 = 0, and above 80% with d55 = 0.

So just as in Section 7, although the distributions are extremely close, the test is able to
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distinguish them if n and J are large enough. Furthermore, the RMSE is now larger in case

d44 = 0. Again, the test cannot distinguish between the complete distribution and the one

with d55 = 0, but the RMSEs are also identical. The test can pick up this difference as well

when n and J are larger. In particular, if n = 10, 000 and J = 5, the rejection probability is

7.2% when d55 = 0.

Table 3: Rejection probabilities and RMSE with sequence of incomplete distributions

Complete d55 = 0 d44 = 0 d22 = 0

Reject RMSE Reject RMSE Reject RMSE Reject RMSE

n = 1000, J = 3 0.906 0.165 0.901 0.166 0.903 0.165 0.100 0.370

n = 5000, J = 4 0.822 0.145 0.826 0.145 0.059 0.159 0.092 0.335

Table 4 shows the rejection probabilities and the RMSE for different choices of ρ, n, and

J . As expected, the rejection probability increases with ρ and the RMSE decreases with ρ.

Notice that the matrix A does not have full if ρ = 0. Therefore, we would expect the best

finite sample properties of the test if J is small, because then we get great power properties

while we can still control size. However, as seen in the first example, in general J has to

increase as n increases in order to control size. Similar as in Section 7 J seems too large

relative to the sample size because the power decreases significantly as n and J increase

and even the RMSE increases when ρ = 0.5. The properties improve when n = 20, 000 and

J = 4. Then the RMSE with ρ = 0.5 is only 0.076 (and the rejection probability is 1) and

if ρ = 0.3 the rejection probability goes up to 0.409 with a RMSE of 0.147. These results

illustrate that both the properties of the estimator and the test can be sensitive to the choice

of J .

Table 4: Rejection probabilities and RMSE with sequence of complete distributions

ρ = 0.5 ρ = 0.3 ρ = 0.1 ρ = 0

Reject RMSE Reject RMSE Reject RMSE Reject RMSE

n = 1000, J = 3 1.000 0.110 0.532 0.205 0.106 0.314 0.039 0.388

n = 5000, J = 4 0.993 0.119 0.178 0.180 0.031 0.236 0.041 0.362
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